Heavy Ion Physics

Nu Xu

Nuclear Science Division

Lawrence Berkeley National Laboratory

Outline

(1) STAR Physics Programs

(2) Selected Results from RNC

- Partonic collectivity and EoS at RHIC(a)

- Preparation for BES

G. Odyniec

- Heavy flavor

X. Dong

- Jet reconstruction

M. Polkson

- HFT

H. Wieman

Physics Goals at RHIC

RHIC

Au+Au Cu+Cu d+Au p+p

200 - 5 GeV

Polarized p+p 200 & 500 GeV

p+p d+Au pp2pp

- Identify and study the property of matter (EOS) with partonic degrees of freedom.
- Explore the QCD phase diagram.
- Study the origin of spin in p.
- Investigate the physics at small-x, gluon-rich region.

STAR Physics Focus

1) At 200 GeV top energy

- Study *medium properties, EoS*
- pQCD in hot and dense medium

2) RHIC beam energy scan

- Search for *critical point*
- Chiral symmetry restoration

Polarized spin program

- Study proton intrinsic properties

Forward program

- Study low-x properties, search for CGC
- Study elastic (inelastic) processes (pp2pp)
- Investigate *gluonic exchanges*

STAR Detectors: Full 2π particle identification!

STAR Detector

High-energy nuclear collisions

Initial Condition

- initial scatterings
- baryon transfer
- E_T production
- parton dof

System Evolves

- parton interaction
- parton/hadron expansion

Bulk Freeze-out

- hadron dof
- interactions stop

QCD Energy Scale

T _C A _{QCD} T _{CH}	GeV, similar to values critical temperature QCD scale parameter chemical freeze-out temperature scale for χ symmetry breaking	$\begin{split} m_c &\sim 1.2 - 1.5 \text{ GeV} >> \Lambda_{QCD} \\ &- \text{pQCD production - parton density at small-x} \\ &- \text{QCD interaction - medium properties} \\ R_{cc} &\sim 1/m_C \ => \text{color screening} \\ J/\psi &=> \text{deconfinement and thermalization} \end{split}$
u-, d-, s-quarks: <i>light-flavors</i>		c-, b-quarks: <i>heavy-flavors</i>

Strange-quark⇒ hadronization partonic collectivity

Charm-quark⇒ thermalization

ϕ -meson from Au+Au Collisions

The ratios $N(\phi)/N(K)$ independent of systematic size, nor the collision energy In the coalescence model, the ratio increase as collision energy as K yields increases.

The ss fusion $\Rightarrow \phi$ -meson formation!

STAR: Phys. Lett. <u>B612</u>, 81(2005)

ϕ -meson from Cu + Cu Collisions

- (1) Levy function well described the data (exponential in central and power-law-like in peripheral)
- (2) Similar trend in Cu+Cu and Au+Au at the similar N_{part} and same collision energy

STAR: Phys. Lett. **B673**, 183(2009)

B. Mohanty, X.H. Shi

Strangeness Enhancement & ϕ -meson

200 GeV collisions

- The productions of the multistrange baryons Ξ , Ω are enhanced in heavy ion collisions compared to that of in p+p collisions
- The ϕ -meson productions are also enhanced. At this energy, since ϕ -mesons do not obey OZI, its production is not canonically suppressed \rightarrow

The observed Strangeness Enhancements are NOT due to canonical suppression!

STAR:

- PRL. <u>98</u> (2007) 062301 (nucl-ex/0606014)
- PRL 99, 112301(07); nucl-ex/ 0705.2511
- Phys. Lett. **B673**, 183(2009).

Next Step for ϕ -meson

In high-energy nuclear collisions:

- (1) ϕ -meson are formed from s- and sbar-quark coalescence.
- (2) Strangeness enhancement due to collision dynamics, not canonical suppression.
- (3) Next step: $\phi => e^+e^-$ and compare with K^+K^- channel.

STAR Run8 200 GeV d+Au preliminary results.

C. Jena, X.P. Zhang

Anisotropy Parameter v₂

coordinate-space-anisotropy

$$\varepsilon = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle} \qquad v_2 = \langle \cos 2\varphi \rangle, \quad \varphi = \tan^{-1}(\frac{p_y}{p_x})$$

Initial/final conditions, EoS, degrees of freedom

v₂(p_T) in Cu + Cu at 200 GeV

STAR QM2009: Y. Lu, S. Shi

2

3

p_T (GeV/c)

Ideal hydro: P. Huovinen

- (1) p_T < 2 GeV/c Smaller v₂ for heavier hadrons
- (2) $p_T > 2 \text{ GeV/c}$ $v_2(\Lambda, \Xi) > v_2(K_S^0)$
- (3) The ideal hydro fails to reproduce the centrality dependence
 - Fluctuation of v₂?
 - Viscosity?
 - Incomplete thermalization?

3

Systematic v₂ Measurements

STAR Au + Au : PR<u>C77</u>, 054901 (2008): STAR Au + Au : PR<u>C77</u>, 054901 (2008): H. J. W. Lu, A. Poskanzer, S. Shi

STAR Preliminary Cu+Cu
H. Masui, A. Poskanzer, *S. Shi*

In 200 GeV Collisions

- (1) The strength of v₂ is driven by the collisions centrality: stronger flow for more central collisions.
- (2) Mesons and baryons behave similarly.
- (3) At given centrality, all hadrons are scaled =>

Partonic Collectivity!

Test on Hydrodynamic Limit

- (1) Even in central Au + Au collisions, the results indicate that the system is still away, 10-30%, from hydro limit.
- (2) Hadron mass dependence not fully understood

Test of Ideal Hydro Predictions

The v_4/v_2^2 ratio is larger than predictions from ideal hydrodynamics, which means that the system has not reached the ideal hydrodynamics.

N. Li

ϕ -meson Flow: Partonic Flow

φ-mesons are special: - they are formed via coalescence with thermalized s-quarks

'They are made via coalescence of seemingly thermalized quarks in central Au+Au collisions, the observations imply hot and dense matter with partonic collectivity has been formed at RHIC'

STAR: Phys. Rev. Lett., **99**, 112301(07), nucl-ex/0703033; Phys. Lett. <u>B612</u>, 81(05) 2008; RHIC Ph.D Thesis Award.

New Results (Run7)

- 1) At low p_T mass dependence
- 2) At intermediate p_T clear difference between baryons and mesons
- 3) Hadrons with *u-, d-, s-*quarks show similar collectivity

Final word on partonic collectivity at RHIC!

STAR Preliminary, QM2009: S. Shi

Next Step for v₂ Measurements

- (1) Partonic collectivity measurements for light quarks (*u*, *d*, *s*) are done.
- (2) Next Step: measure the heavy quark (c, b) collectivity to address the issue of local thermalization at RHIC. A crucial step toward understanding of QGP formation in high-energy nuclear collisions.

Summary

We have focused our physics program on the bulk properties (EoS) of the medium created in heavy ion collisions at RHIC:

- Pressure gradient driven expansion
- Partonic collectivity

Next step:

- (1) Light quark thermalization: heavy quark collectivity
- (2) QCD phase boundary: n_q -scaling in v_2 , net-p Kurtosis
- (3) Chiral physics: **di-electron measurements** σ , v_2 , R_{AA}